首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37906篇
  免费   3154篇
  国内免费   2753篇
  2024年   14篇
  2023年   437篇
  2022年   523篇
  2021年   1958篇
  2020年   1355篇
  2019年   1711篇
  2018年   1722篇
  2017年   1174篇
  2016年   1642篇
  2015年   2401篇
  2014年   2827篇
  2013年   3074篇
  2012年   3575篇
  2011年   3165篇
  2010年   1987篇
  2009年   1614篇
  2008年   1968篇
  2007年   1718篇
  2006年   1586篇
  2005年   1285篇
  2004年   1052篇
  2003年   909篇
  2002年   758篇
  2001年   664篇
  2000年   587篇
  1999年   622篇
  1998年   343篇
  1997年   357篇
  1996年   336篇
  1995年   317篇
  1994年   332篇
  1993年   263篇
  1992年   311篇
  1991年   241篇
  1990年   213篇
  1989年   189篇
  1988年   127篇
  1987年   101篇
  1986年   92篇
  1985年   86篇
  1984年   59篇
  1983年   53篇
  1982年   34篇
  1981年   9篇
  1980年   9篇
  1979年   11篇
  1976年   1篇
  1965年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Ischemic stroke is a major composition of cerebrovascular disease, seriously threatening to human health in the world. Activin A (ActA), belonging to transforming growth factor-beta (TGF-β) super family, plays an important role in the hypoxic-ischemic brain injury through ActA/Smads pathway. While as an essential phosphorylation assistor in TGF-β signaling, the functions and mechanisms of smad anchor for receptor activation (SARA) in ischemic brain injury remain poorly understood. To solve this problem and explore the pathological processes of ischemic stroke, we used an Oxygen–Glucose deprivation (OGD) model in nerve growth factor-induced differentiated rattus PC12 pheochromocytoma cells and down regulated the expressions of SARA by RNA interference technology. Our results showed that the repression of SARA before OGD exposure reduced the expressions of Smad2, 3, 4 mRNA and the phosphorylation rate of Smad2 protein, but it did not affect the mRNA expressions of Smad7. After OGD treatment, ActA/Smads pathway was activated and the expression of SARA in the SARA pre-repression group was significantly up-regulated. The pre-repression of SARA increased the sensitivities of nerve-like cells to OGD damage. Moreover, the mRNA expression of Smad7 which was supposed to participate in the negative feedback of ActA/Smads pathway was also elevated due to OGD injury. Taken together, these results suggest a positive role of SARA in assisting the phosphorylation of Smad2 and maintaining the neuron protective effect of ActA/Smads pathway.  相似文献   
62.
Phenol red is widely used in cell culture as a pH indicator. Recently, it also has been reported to have estrogen-like bioactivity and be capable of promoting cell proliferation in different cell lines. However, the effect of phenol red on primary neuronal culture has never been investigated. By using patch clamp technique, we demonstrated that hippocampal pyramidal neurons cultured in neurobasal medium containing no phenol red had large depolarization-associated epileptiform bursting activities, which were rarely seen in neurons cultured in phenol red-containing medium. Further experiment data indicate that the suppressive effect of the phenol red on the abnormal epileptiform burst neuronal activities was U-shape dose related, with the most effective concentration at 28 µM. In addition, this concentration related inhibitory effect of phenol red on the epileptiform neuronal discharges was mimicked by 17-β-estradiol, an estrogen receptor agonist, and inhibited by ICI-182,780, an estrogen receptor antagonist. Our results suggest that estrogen receptor activation by phenol red in the culture medium prevents formation of abnormal, epileptiform burst activity. These studies highlight the importance of phenol red as estrogen receptor stimulator and cautions of careful use of phenol red in cell culture media.  相似文献   
63.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
64.
J Kyte  K Y Xu  R Bayer 《Biochemistry》1987,26(25):8350-8360
Evidence that the peptide HLLVMKGAPER, which can be released from intact sodium and potassium ion activated adenosinetriphosphatase by tryptic digestion, is located on the cytoplasmic surface of the native enzyme has been obtained. An immunoadsorbent directed against the carboxy-terminal sequence of this tryptic peptide has been constructed. The peptide KGAPER was synthesized by solid-phase techniques. Antibodies against the sequence -GAPER were purified by immunoadsorption, using the synthetic peptide attached to agarose beads. These antibodies, in turn, were coupled to agarose beads to produce an immunoadsorbent. Sealed, right-side-out vesicles, prepared from canine kidneys, were labeled with pyridoxal phosphate and sodium [3H]borohydride in the absence or presence of saponin, respectively. A tryptic digest of these labeled vesicles was passed over the immunoadsorbent. Large increases in the incorporation of radioactivity into the peptides bound by the immunoadsorbent were observed in the digests obtained from the vesicles exposed to saponin. From the results of several control experiments examining the labeling reaction as applied to these vesicles, it could be concluded that this increase in incorporation resulted only from the access that the reagents gained to the inside of the vesicles in the presence of saponin and that the increase in the extent of modification was due to the cytoplasmic disposition of this segment in the native enzyme.  相似文献   
65.
Reversing the highly immunosuppressive tumor microenvironment (TME) is essential to achieve long-term efficacy with cancer immunotherapy. Despite the impressive clinical response to checkpoint blockade in multiple types of cancer, only a minority of patients benefit from this approach. Here, we report that the oncolytic virus M1 induces immunogenic tumor cell death and subsequently restores the ability of dendritic cells to prime antitumor T cells. Intravenous injection of M1 disrupts immune tolerance in the privileged TME, reprogramming immune-silent (cold) tumors into immune-inflamed (hot) tumors. M1 elicits potent CD8+ T cell-dependent therapeutic effects and establishes long-term antitumor immune memory in poorly immunogenic tumor models. Pretreatment with M1 sensitizes refractory tumors to subsequent checkpoint blockade by boosting T-cell recruitment and upregulating the expression of PD-L1. These findings reveal the antitumor immunological mechanism of the M1 virus and indicated that oncolytic viruses are ideal cotreatments for checkpoint blockade immunotherapy.Subject terms: Cancer microenvironment, Targeted therapies  相似文献   
66.
Inflammatory responses mediated by activated microglia play a pivotal role in the pathogenesis of human immunodeficiency virus type 1 (HIV-1)-associated neurocognitive disorders. Studies on identification of specific targets to control microglia activation and resultant neurotoxic activity are imperative. Increasing evidence indicate that voltage-gated K+ (Kv) channels are involved in the regulation of microglia functionality. In this study, we investigated Kv1.3 channels in the regulation of neurotoxic activity mediated by HIV-1 glycoprotein 120 (gp120)-stimulated rat microglia. Our results showed treatment of microglia with gp120 increased the expression levels of Kv1.3 mRNA and protein. In parallel, whole-cell patch-clamp studies revealed that gp120 enhanced microglia Kv1.3 current, which was blocked by margatoxin, a Kv1.3 blocker. The association of gp120 enhancement of Kv1.3 current with microglia neurotoxicity was demonstrated by experimental results that blocking microglia Kv1.3 attenuated gp120-associated microglia production of neurotoxins and neurotoxicity. Knockdown of Kv1.3 gene by transfection of microglia with Kv1.3-siRNA abrogated gp120-associated microglia neurotoxic activity. Further investigation unraveled an involvement of p38 MAPK in gp120 enhancement of microglia Kv1.3 expression and resultant neurotoxic activity. These results suggest not only a role Kv1.3 may have in gp120-associated microglia neurotoxic activity, but also a potential target for the development of therapeutic strategies.  相似文献   
67.
<正>Even after allogeneic hematopoietic stem cell transplantation(HSCT), which has been acknowledged as a curative procedure, relapse of leukemia remains the leading cause of death following transplantation and is a disappointment to transplant physicians. Leukemic relapse occurs due to leukemia cell escape from immune-mediated killing (immune escape) by pre-transplantation conditioning and post-transplantation immune control. Immune exhaustion of donor T  相似文献   
68.
69.
Diabetic nephropathy (DN) as a global health concern is closely related to inflammation and oxidation. Isoliquiritigenin (ISL), a natural flavonoid compound, has been demonstrated to inhibit inflammation in macrophages. Herein, we investigated the effect of ISL in protecting against the injury in STZ-induced type 1 DN and in high glucose-induced NRK-52E cells. In this study, it was revealed that the administration of ISL not only ameliorated renal fibrosis and apoptosis, but also induced the deterioration of renal function in diabetic mice. Mediated by MAPKs and Nrf-2 signaling pathways, respectively, upstream inflammatory response and oxidative stress were neutralized by ISL in vitro and in vivo. Moreover, as further revealed by the results of molecular docking, sirtuin 1 (SIRT1) binds to ISL directly, and the involvement of SIRT1 in ISL-mediated renoprotective effects was confirmed by studies using in vitro models of SIRT1 overexpression and knockdown. In summary, by reducing inflammation and oxidative stress, ISL has a significant pharmacological effect on the deterioration of DN. The benefits of ISL are associated with the direct binding to SIRT1, the inhibition of MAPK activation, and the induction of Nrf-2 signaling, suggesting the potential of ISL for DN treatment.Subject terms: Pharmacology, Molecular biology  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号